99 research outputs found

    Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study

    Get PDF
    Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD

    Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain size is associated with cognitive ability in adulthood (correlation ~ .3), but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life.</p> <p>Methods</p> <p>We recruited 107 community-dwelling volunteers (29% male) aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g) from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA) (an estimate of maximal brain volume), and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA.</p> <p>Results</p> <p>Whole brain volume (WBV) correlated with general cognitive ability (g) (r = .21, P < .05). Statistically significant associations between brain areas and specific cognitive abilities became non-significant when corrected for maximal brain volume (estimated using ICA), i.e. there were no statistically significant associations between atrophy and cognitive ability. The association between WBV and g was largely attenuated (from .21 to .03: i.e. attenuating the variance by 98%) by correcting for ICA. ICA accounted for 6.2% of the variance in g in old age, whereas atrophy accounted for < 1%.</p> <p>Conclusion</p> <p>The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.</p

    Iron and Calcium Biomineralizations in the Pampean Coastal Plains, Argentina: Their Role in the Environmental Reconstruction of the Holocene

    Get PDF
    Biomineralizations are biogenic composites, crystalline or amorphous,produced by the metabolic activity of organisms distributed all over the world. Theaim of this work was to evaluate the presence of iron and calcium biomineralizationsand their influence in the physicochemical and mineralochemical variations inpaleo and actual pedosedimentary sequences of the coastal plains in Mar Chiquita.The complex interaction of calcium with iron biomineralizations, as framboidal andpoliframboidal pyrites associated with gypsum, barite, calcite, halite, and iron oxyhydroxides,have demonstrated the active and complex biogeochemistry that occursin the temperate?wet paleoesturaries and estuaries of the coastal Pampean Plains.Particularly the consequences that different human activities could have.Fil: Osterrieth, Margarita Luisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Frayssinet, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Geología de Costas y del Cuaternario. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Geología de Costas y del Cuaternario; ArgentinaFil: Frayssinet, Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Full text link
    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14C and 10Be records, the authors show that Southern Ocean freshwater hosing can trigger global change

    Cognitive neuroscience of delusions in aging

    Get PDF
    Assessments and clinical understanding of late-onset delusions in the elderly are inconsistent and often incomplete. In this review, we consider the prevalence, neurobehavioral features, and neuroanatomic correlations of delusions in elderly persons – those with documented cognitive decline and those with no evidence of cognitive decline. Both groups exhibit a common phenotype: delusions are either of persecution or of misidentification. Late-onset delusions show a nearly complete absence of the grandiose, mystical, or erotomanic content typical of early onset psychoses. Absent also from both elderly populations are formal thought disorders, thought insertions, and delusions of external control. Neuroimaging and behavioral studies suggest a frontotemporal localization of delusions in the elderly, with right hemispheric lateralization in delusional misidentification and left lateralization in delusions of persecution. We propose that delusions in the elderly reflect a common neuroanatomic and functional phenotype, and we discuss applications of our proposal to diagnosis and treatment

    Retinal nerve fiber layer thickness and cognitive ability in older people:the Lothian Birth Cohort 1936 study

    Get PDF
    BACKGROUND: This study aims to examine the relationship between the retinal nerve fiber layer (RNFL) thickness as measured by optical coherence tomography (OCT) and lifetime cognitive change in healthy older people. METHODS: In a narrow-age sample population from the Lothian Birth Cohort 1936 who were all aged approximately 72 years when tested, participants underwent RNFL measurements using OCT. General linear modeling was used to calculate the effect of RNFL thickness on three domains; general cognitive ability (g-factor), general processing speed (g-speed) and general memory ability (g-memory) using age at time of assessment and gender as co-variates. RESULTS: Of 105 participants, 96 completed OCT scans that were of suitable quality for assessment were analyzed. Using age and gender as covariates, we found only one significant association, between the inferior area RNFL thickness and g-speed (p = 0.049, η(2) = 0.045). Interestingly, when we included age 11 IQ as a covariate in addition to age and gender, there were several statistically significant associations (p = 0.029 to 0.048, η(2) = 0.00 to 0.059) in a negative direction; decreasing scores on measures of g-factor and g-speed were associated with increasing RNFL thickness (r = −0.229 to −0.243, p < 0.05). No significant associations were found between RNFL thickness and g-memory ability. When we considered the number of years of education as a covariate, we found no significant associations between the RNFL thickness and cognitive scores. CONCLUSIONS: In a community dwelling cohort of healthy older people, increased RNFL thickness appeared to be associated with lower general processing speed and lower general cognitive ability when age 11 IQ scores were included as a covariate

    Brain age predicts mortality

    Get PDF
    Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N = 2001), then tested in the Lothian Birth Cohort 1936 (N = 669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly

    Sexual Dimorphism in Healthy Aging and Mild Cognitive Impairment: A DTI Study

    Get PDF
    Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore